Skip to main content
Topology and its ApplicationsVolume 278, 1 June 2020, Article number 107232

Projective versions of the properties in the Scheepers Diagram(Article)(Open Access)

  • Osipov, A.V.
  Save all to author list
  • Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ural State University of Economics, Yekaterinburg, Russian Federation

Abstract

Let P be a topological property. A.V. Arhangel'skii calls X projectively P if every second countable continuous image of X is P. Lj.D.R. Kočinac characterized the classical covering properties of Menger, Rothberger, Hurewicz and Gerlits-Nagy in term of continuous images in Rω. In this paper we study the functional characterizations of all projective versions of the selection properties in the Scheepers Diagram. © 2020 Elsevier B.V.

Author keywords

Cp-theoryFunction spacesProjectively Gerlits-Nagy spaceProjectively Hurewicz spaceProjectively Menger spaceProjectively Rothberger spaceScheepers DiagramSelection principles
  • ISSN: 01668641
  • CODEN: TIAPD
  • Source Type: Journal
  • Original language: English
  • DOI: 10.1016/j.topol.2020.107232
  • Document Type: Article
  • Publisher: Elsevier B.V.


© Copyright 2020 Elsevier B.V., All rights reserved.

Cited by 4 documents

Badmaev, O.O.
About the properties of spaces Cp(X) close to Frechet–Urysohn property | О свойствах пространств Cp(X), близких к свойству Фреше–Урысона
(2024) Vestnik Tomskogo Gosudarstvennogo Universiteta, Matematika i Mekhanika
Lazarev, V.R.
On a class of homeomorphisms of function spaces preserving the Lindelöf number of domains | Об одном классе гомеоморфизмов пространств функций, сохраняющем число Линделёфа областей определения
(2023) Vestnik Tomskogo Gosudarstvennogo Universiteta, Matematika i Mekhanika
Osipov, A.V.
ON EMBEDDING OF F-HEDGEHOGS IN FUNCTION SPACES
(2023) Publications de l'Institut Mathematique
View details of all 4 citations
{"topic":{"name":"Ultrafilter; Forcing; Continuum Hypothesis","id":3824,"uri":"Topic/3824","prominencePercentile":77.59719,"prominencePercentileString":"77.597","overallScholarlyOutput":0},"dig":"dec20cbc8666b570de961f16c7a4966f6b8eecdef195d50e3984a807a60f1b5c"}

SciVal Topic Prominence

Topic:
Prominence percentile: