

The nickel-based superalloys are unique materials with complex alloying used in the manufacture of gas turbine engines. The alloys exhibit excellent resistance to mechanical and chemical degradation under the high loads and long-term isothermal exposures. The main service property of the alloy is its heat resistance, which is expressed by the tensile strength. Simulation of changes in the heat resistance is an important engineering problem, which would significantly simplify the design of new alloys. In this paper, we apply a deep learning neural network to predict the tensile strength values and to compare the predictive ability of the proposed approach. Also, the results are presented of the feed-forward neural network accounting changes in heat resistance vs isothermal exposures that are expressed in the complex Larson-Miller parameter. © 2020 American Institute of Physics Inc.. All rights reserved.
Tarasov, D.A.; Ural Federal University, Mira str., 19, Ekaterinburg, Russian Federation;
© Copyright 2020 Elsevier B.V., All rights reserved.