Skip to main content
Linear Algebra and Its ApplicationsVolume 446, 1 April 2014, Pages 304-313

A decreasing sequence of upper bounds for the Laplacian energy of a tree(Article)(Open Access)

  Save all to author list
  • aDepartamento de Matemáticas, Universidad Católica Del Norte, Av. Angamos, 0610 Antofagasta, Chile
  • bFaculty of Science, University of Kragujevac, P.O.B. 60, 34000 Kragujevac, Serbia

Abstract

Let R be a nonnegative Hermitian matrix. The energy of R, denoted by E(R), is the sum of absolute values of its eigenvalues. We construct an increasing sequence that converges to the Perron root of R. This sequence yields a decreasing sequence of upper bounds for E(R). We then apply this result to the Laplacian energy of trees of order n, namely to the sum of the absolute values of the eigenvalues of the Laplacian matrix, shifted by -2(n-1)/n. © 2014 Elsevier Inc.

Author keywords

Energy (of a matrix)Graph spectrumLaplacian energyLaplacian spectrum (of a graph)
  • ISSN: 00243795
  • CODEN: LAAPA
  • Source Type: Journal
  • Original language: English
  • DOI: 10.1016/j.laa.2014.01.013
  • Document Type: Article

  Gutman, I.; Faculty of Science, University of Kragujevac, P.O.B. 60, Serbia;
© Copyright 2014 Elsevier B.V., All rights reserved.

Cited by 5 documents

Zhao, J. , Hameed, S. , Ahmad, U.
Sequence of Bounds for Spectral Radius and Energy of Digraph
(2024) Symmetry
Ganie, H.A. , Carmona, J.R.
An (increasing) sequence of lower bounds for the spectral radius and energy of digraphs
(2023) Discrete Mathematics
Andrade, E. , Carmona, J.R. , Poveda, A.
On the energy of singular and non singular graphs
(2020) Match
View details of all 5 citations
{"topic":{"name":"Eigenvalue; Laplacian Matrix; Matrix (Mathematics)","id":9754,"uri":"Topic/9754","prominencePercentile":84.93859,"prominencePercentileString":"84.939","overallScholarlyOutput":0},"dig":"2287c034a63176f5d0fb94877244e2f50e5bc05124f698f4098fe9fbd93a8114"}

SciVal Topic Prominence

Topic:
Prominence percentile: