Skip to main content
Acta Polytechnica HungaricaVolume 18, Issue 9, 2021, Pages 9-25

Jensen Type Inequality for the Bipolar Shilkret, Sugeno and Choquet Integrals(Article)(Open Access)

  • Mihailović, B.,
  • Štrboja, M.,
  • Todorov, M.
  Save all to author list
  • aUniversity of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, Novi Sad, 21000, Serbia
  • bUniversity of Novi Sad, Faculty of Sciences, Department of Mathematics and Informatics, Trg Dositeja Obradovića 4, Novi Sad, 21000, Serbia
  • cUniversity of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, Novi Sad, 21000, Serbia

Abstract

In this paper we prove the Jensen type inequality for the discrete bipolar Shilkret and Sugeno integrals. We propose the conditions for the validity of this type inequality for the discrete bipolar Choquet integral. In order to illustrate the obtained results, some examples are given. © 2021, Budapest Tech Polytechnical Institution. All rights reserved.

Author keywords

Bi-capacityBipolar Choquet integralBipolar Shilkret integralBipolar Sugeno integralJensen’s inequality

Funding details

Funding sponsor Funding number Acronym
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja200156,451-03-68/2020-14/200156,451-03-9/2021-14/ 200125MPNTR
  • 1

    The authors acknowledge the financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia (the first author: project \u201CInnovative scientific and artistic research from the FTS (activity) domain\u201D Grant No. 451-03-68/2020-14/200156, the second author: Grant No. 451-03-9/2021-14/ 200125).

  • ISSN: 17858860
  • Source Type: Journal
  • Original language: English
  • DOI: 10.12700/APH.18.9.2021.9.2
  • Document Type: Article
  • Publisher: Budapest Tech Polytechnical Institution


© Copyright 2022 Elsevier B.V., All rights reserved.

Cited by 1 document

Durakovic, N. , Grbic, T. , Medic, S.
Discrete-Mellin transform and discrete g-Mellin convolution in probability theory
(2022) SISY 2022 - IEEE 20th Jubilee International Symposium on Intelligent Systems and Informatics, Proceedings
View details of this citation
{"topic":{"name":"Choquet Integral; Fuzzy Measure; Multiple-Criteria Decision Analysis","id":3890,"uri":"Topic/3890","prominencePercentile":86.6894,"prominencePercentileString":"86.689","overallScholarlyOutput":0},"dig":"db31302d1c76e83696607f258531253674e681c76256607da48185e79dae5778"}

SciVal Topic Prominence

Topic:
Prominence percentile: