

Biopolymer-based bioactive hydrogels are excellent wound dressing materials for wound healing applications. They have excellent properties, including hydrophilicity, tunable mechanical and morphological properties, controllable functionality, biodegradability, and desirable biocompatibility. The bioactive hydrogels were fabricated from bacterial cellulose (BC), gelatin, and graphene oxide (GO). The GO-functionalized-BC (GO-f-BC) was synthesized by a hydrothermal method and chemically crosslinked with bacterial cellulose and gelatin using tetraethyl orthosilicate (TEOS) as a crosslinker. The structural, morphological, and wettability properties were studied using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and a universal testing machine (UTM), respectively. The swelling analysis was conducted in different media, and aqueous medium exhibited maximum hydrogel swelling compared to other media. The Franz diffusion method was used to study curcumin (Cur) release (Max = 69.32%, Min = 49.32%), and Cur release kinetics followed the Hixson-Crowell model. Fibroblast (3T3) cell lines were employed to determine the cell viability and proliferation to bioactive hydrogels. Antibacterial activities of bioactive hydrogels were evaluated against infection-causing bacterial strains. Bioactive hydrogels are hemocompatible due to their less than 0.5% hemolysis against fresh human blood. The results show that bioactive hydrogels can be potential wound dressing materials for wound healing applications. © 2023 The Authors. Published by American Chemical Society
| Funding sponsor | Funding number | Acronym |
|---|---|---|
| Horizon 2020 Framework Programme See opportunities by H2020 | 951747 | H2020 |
| Horizon 2020 Framework Programme See opportunities by H2020 | H2020 | |
| 104895 |
The authors would like to thank the European Union\u2019s Horizon programme for partly supporting the research project. This project has received funding from the European Union\u2019s Horizon 2020 research and innovation program under grant agreement No. 951747.
Khan, M.U.A.; Biomedical Research Center, Qatar University, Doha, Qatar;
Rehman, R.A.; Oral and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Kerian, Kubang, Malaysia;
Hasan, A.; Biomedical Research Center, Qatar University, Doha, Qatar;
© Copyright 2023 Elsevier B.V., All rights reserved.